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Project Summary: “We propose developing a user-friendly survey tool and utilizing a multi-agency 
cooperative network to map the distribution of WRC dieback and lay groundwork for more focused 
sampling of mortality-causing agents.”  
 
Product list: 
1. Geographic extent of WRC dieback (OR, WA)  
V S123 + iNaturalist map with ground-verified WRC dieback locations 

2. Network of locations with known WRC dieback for future sampling 
V S123 locations (n =369) and plots (n = 147), as well as mapped areas and a cultivated list of sites 

for longer-term monitoring 
3. List of probable environmental and site characteristics associated with WRC dieback 
V Exploratory categorical decision tree analyses selected several environmental variables as 

predictors of sites with dieback 
V Statistical analyses found site factors associated with region-specific dieback 

4. Permanently tagged tree/site used to monitor/photograph dieback over time 
V S123 plots  

5. User-friendly, web-based survey tool (Survey123) with standardized protocols to record dieback 
V S123 form and written protocol (https://arcg.is/b9Xrr)  

6. Standardized methodology and protocol instructions 
V Written protocol (https://arcg.is/b9Xrr) and video (https://youtu.be/3JgfxTJ7Jag) 

7. Outreach products documenting extent of dieback and site/environmental results 
V  Storymap: https://arcg.is/ezSaf 
V Dashboard: https://arcg.is/0em1Xv0 

8. Presentations at 2021 National FHM meeting and 2021 WIFDWC climate change virtual meeting 
V SAF 2021 poster 
V Presented progress report at 2021 WIFDWC Climate Change Meeting (larger meeting cancelled) 
V 33 additional outreach and professional presentations 

9. ADS and FIA ‘heads-up’: Specific coordinates provided to ADS and FIA for recording WRC dieback 
V Heads-up layer of WRC dieback points and polygons provided to Danny DePinte for conversion 

to a TPK layer (February 2022) 
 
10. Bonus products and collaborations:  
V Created data collection template adapted by WSU Extension for an iNaturalist citizen science 

group to enhance community engagement and broaden data collection   
V Assisted with creation of a WRC summit attended by researchers and natural resource 

specialists in U.S. and Canada 
V Sponsored Washington State University researchers for USFS Emerging Pests funding for 

dendrochronology analyses, and provided dieback sampling sites and field time for researchers 
V Contributing to WRC dieback synthesis publication led by Washington State University in spring 

2022 

https://arcg.is/b9Xrr
https://arcg.is/b9Xrr


 
Issues or follow-up needed to quantify/complete the full extent of WRC dieback: 
ü No collaborator plots/input from BC or Idaho 
ü Inadequate sampling of WA Olympic Peninsula 
Investigating the extent and possible causes of western redcedar dieback throughout its range: 

Additional information to support final Evaluation Monitoring project report (WC-EM-20-02) 
 
Scope of the dieback issue 
 
Forest health specialists, forest landowners, and land managers have been observing western redcedar 
(WRC) dieback from OR through western Canada in recent years. Groups of WRC with evidence of 
dieback have even been observed across most of the range, often in areas which they normally thrive 
such as along streams and in shaded areas. The cause(s) for this sometimes sudden and expanding 
dieback is unknown and the focus of our project. Unfortunately, dieback symptoms vary widely and are 
not easily visible during aerial detection survey, where this type of damage is typically recorded, 
therefore the extent is unknown, but it appears to be occurring range-wide.  
 
Some symptoms include thinning crowns, branch dieback, branch flagging, recent topkill, chlorosis 
(yellow foliage), heavy cone crops and mortality (Figure 1).  

 
 
Biological stressors 
 
Western redcedar is fairly insect and disease resistant. Insects that infest WRC are typically secondary, 
meaning that they are not aggressive tree-killing species, but are opportunistic pests and can only attack 
dead and dying redcedar. When healthy, redcedar can resist endemic levels of bark beetles (Phloeosinus 
spp.) and woodboring beetles (Semanotus amethystinus, Trachykele blondeli, Chrysobothris nixa, etc.). 
While heartwood decay is commonly present in WRC, the species contains terpenoid chemical defense 
compounds (thujone and thujaplicin) and also the use sap as a mechanical barrier that make it resistant 
to many common decay fungi. Western redcedar is susceptible to various root and butt rot pathogens 
(Postia sericeomollis, Coniferiporia weirii, Armillaria ostoyae) and often has extensive heart rot, but 
primary diseases have not been visibly present at most sites where dieback has been observed. Novel 

Fig. 1: Thinning                   Flagging                              Topkill                                Yellowing 



insects or diseases have not been observed and are not considered the main causal agents of this 
dieback epidemic. 
 
 
Abiotic stressors 
 
Given the apparent range-wide dieback and lack of consistent biotic factors, we hypothesize that the 
dieback is associated with abiotic causes. The PNW has been seeing increased droughty periods, 
especially during the summer months (Figure 2), and an increase in temperature. We hypothesize that 
WRC are experiencing dieback in areas where warmer, drier conditions are occurring and/or in areas 
where more frequent droughts affect the species ability to access water during the growing season. We 
also hypothesize that site factors that predispose trees to warmer, drier environments (i.e. south-facing 
slopes, lower elevation, etc.) may be factors contributing to dieback. 
 
 

 

WASHINGTON 

OREGON 



Figure 2.  Oregon and Washington percent areas in U.S. Drought Monitor categories (D0=Abnormally 
Dry, D1=Moderate Drought, D2=Severe Drought, D3=Extreme Drought, D4=Exceptional Drought) from 
2000 through 2021. https://droughtmonitor.unl.edu/ 
 
Western redcedar appears to be sensitive to a 
changing climate. A range of time periods and 
General Circulation Models (Table 1 from Crookston 
et al. 2009) were chosen for display below (Figure 3: 
a through d): a. current range (circa 2010) of Thuja 
plicata, b. predicted range in 2030 under scenario 
B1, c. predicted range in 2030 under scenario A2, 
and d. predicted range in 2090 under scenario A2. 
Note that even the ‘best case scenario’ B1 illustrates 
some loss of preferential habitat in western WA and 
OR, while models seem to agree that interior 
preferential habitat may expand east and north.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. WRC current and predicted range (habitat favorability increases yellow < green < red [most 
preferred]): a. current range (circa 2010) of Thuja plicata, b. predicted range in 2030 under scenario B1, c. 
predicted range in 2030 under scenario A2, and d. predicted range in 2090 under scenario A2. Plant 
Species and Climate Profile Predictions using Canadian Center of Climate Modeling and Analysis model 
scenarios from Crookston et al. 2009. (Maps of all tested models: 
https://charcoal2.cnre.vt.edu/climate/species/speciesDist/Western-redcedar/) 

b a 

d c 



 
 
 
 
Evaluation monitoring project phases, methods, and questions 
 
Phased data collection  
Å Determine the distribution and extent of WRC dieback across PNW using Survey123  

o Locations – build a network of sites 
o Record symptoms – are they common across sites? 
o How quickly do trees die following initial symptoms? 
o What site factors are associated with dieback (topography, slope position, etc.) 
o Are there any common biotic damage agents across the range? 

 
Å Determine potential causal agents  

o Determine if WRC dieback has associations with geography, soils, environment, 
climate/weather, topography, site info, etc. 

o Large scale (course resolution) soils, climate, topography, veg models included as 
possible covariates 

 
Å Site network available for more in-depth investigations of site-specific causal agents (future 

research) 
o More site specific investigations of dieback 
o Change over time (PIs have committed to continue monitoring a subset of plots) 
o Tree dissections (e.g. rings collected at various stem heights, close inspections of 

dying/dead tops), in-depth root investigations (e.g. depth and area of roots) 
o Detailed soils information 
o Physiology in various canopy positions 
o Use dendrochronology (tree cores) to determine if reduced growth or dieback severity 

associated with specific drought years/months 
 
 
Defining the distribution and extent of WRC dieback in the Pacific Northwest 
 
A total of 369 dieback sites in WA and OR were identified by using Survey123 and of these, plots with 
tree and site data were established at 147 sites (Figure 5). Our goal was to establish a minimum of 10-15 
plots across the range of WRC throughout respective service areas, and we exceeded that number. Data 
collected at each plot included both tree data (e.g. DBH, estimated age based on pictorial evidence, 
crown transparency and dieback levels, crown class) and stand data (e.g. total basal area and basal area 
of symptomatic WRC, aspect, slope position). Growth rates were approximated by collecting increment 
cores and counting the number of annual growth rings within several predetermined diameter growth 
categories or DGC (e.g., 0.25, 0.5, 1.0, 2.0 inch lengths of most recent diameter growth) (see Figure 4). 
One WRC at each plot was often permanently tagged for future monitoring and photographic 
documentation of the progression of dieback.  
 
 



 
Figure 4. Example of a WRC growth increment core and the four predetermined diameter growth 
categories (DGC) that were counted. 
 
Our project metrics were also adapted by University of Washington researchers for use in iNaturalist to 
engage citizen scientists and broaden collection efforts. We included 267 iNaturalist locations in our 
WRC dieback database after sorting out observations outside of OR/WA, healthy tree observations, 
single tree observations, and observations where the cause of mortality was known to be fire (Hulbert 
2022: https://www.inaturalist.org/projects/western-redcedar-dieback-map). Some analyses include 
both Survey123 and iNaturalist collected data. Because we did not collect location data where only 
‘healthy’ WRC occurred with the Survey123 app, for some analyses we compared our dieback database 
with locations of WRC distribution across OR/WA (Figure 5). Rasters of WRC distribution data were 
obtained from the Individual Species Parameter Maps (ITSP) 
(https://www.fs.fed.us/foresthealth/applied-sciences/mapping-reporting/indiv-tree-parameter-
maps.shtml). Raster data were converted to a feature layer, and cells where WRC basal area >0 were 
clipped to WA and OR. As over 40,000 point locations occurred, we selected a 10% ‘training subset’ of 
distribution points from the larger dataset and included 4,365 WRC distribution points across WA/OR in 
our database. For some analyses we combined all data, but we also categorized our plot network into 
three distinct ecoregions: eastern WA (includes central and northeastern WA populations, cutoff at the 
Cascade Crest), western WA, and OR (Figure 5). In several analyses of environmental data we compared 
environments between ecoregions (‘regions’) and WRC status (‘unhealthy/dieback’ vs. ‘WRC 
distribution’). We do not claim that all WRC distribution sites contain only healthy trees, but our goal 
was to define the environmental niche of our PNW dieback sites and compare with the environmental 
niche of the species’ PNW distribution. 
 
Extent of WRC dieback in Washington 
Western redcedar dieback was observed across WA but was much more frequent in some areas. The 
extent of dieback ranged from a few locations observed near the WA coast and on the Olympic 
Peninsula, to a high concentration of locations observed along the low elevation urban corridor south of 
Olympia north along the Puget Sound, to many locations noted in the interior distribution in 
northeastern WA (Figure 5). Dieback was observed across interior northeastern WA populations, in 
central WA (what appear to be extensions of the westside populations over the Cascade Crest), in some 
locations on the Olympic Peninsula, and extensively along the urban corridor south of Olympia up to the 
Canada border (Figure 5). Small pockets of WRC dieback were observed in some drainages on the slopes 
of the western Cascades, but by far the most dieback noted was in lower elevations up the urban 
corridor along the Puget Sound and associated islands (Figures 5 and 6). 
 



Extent of WRC dieback in Oregon 
In Oregon, WRC dieback was concentrated in the north lower elevation Willamette Valley around the 
Portland tri-county area (Multnomah, Washington, and Clackamas counties) and in some drainages 
towards the coast and inland (Figure 5). There was very little WRC dieback noted (by either S123 or 
iNaturalist surveys) along the coast and the southern Cascades, even though these areas were also 
scouted (Figure 5). Much of the dieback was concentrated in oak-pine habitat and at lower elevations. 
Some of the mountain foothills contained pockets of old topkill but upon investigation of these stands, 
advanced stem rot was prolific. Many areas indicating WRC presence, particularly in the mid to lower 
part of the state contained healthy redcedar or a few scattered individuals at higher elevations.  
 

 
Figure 5. Data sources representing sites with ground-verified WRC dieback (S123 sites and iNaturalist 
sites) and data source representing WRC distribution (data from Individual Tree Species Parameter map) 
across Oregon and Washington. Regions are defined as western Washington (west), eastern Washington 
(east, separated by the Cascade Crest) and Oregon. 
 



Figure 6. Heat map illustrating frequency of sites with ground verified WRC dieback indicating intensity is 
highest (yellow) near metropolitan areas (especially west of the Cascade crest), possibly due to a heat 
island effect (inset) which indicates higher temperatures (yellow) also in the metropolitan areas around 
Portland and  Seattle. Data include all Survey123 and iNaturalist dieback locations. 
 
Summary of data collected at western redcedar dieback sites using Survey123 
 
Ownership type of WRC dieback sites varied by state (Table 2).  In OR, most dieback was observed on 
small privately owned land, whereas in WA, most dieback was observed on federal land. In both OR and 
WA, dieback sites were most often recorded on forested land (Table 2).  Average basal area (BA) per plot 
and average basal area of symptomatic WRC per plot varied amongst the three ecoregions with average 
symptomatic WRC ranging from 48 ft2/ac in western WA to 83 ft2/ac in eastern WA sites (Table 2). 
Symptomatic WRC BA generally made up 32-52% of total BA (Table 2). While we attempted to choose 
sites where we did not see active insect or disease activity, heartwood decay was often found during 
extraction of cores (Table 2 and Appendix Table A1). No single biotic damage agent was observed 
frequently across WRC dieback sites (Appendix Table A1). Most dieback sites occurred at lower 
elevations compared with the overall distribution, although this result was most pronounced in OR and 
western WA (Figure 7).  While we expected most dieback sites to fall on southerly aspects, dieback sites 
in OR commonly occurred at sites with no slope, while dieback sites in WA were most often found on 
westerly facing slopes (Figure 8). Slope position varied greatly by region and even within region (Figure 
9). In OR, most dieback sites were recorded on no slope or backslopes; in eastern WA toeslopes and 
backslopes were common; and in western WA backslopes and valley bottoms were most common 
(Figure 9). Slope position was determined on a smaller stand-level scale versus a larger landscape-level 
scale to more accurately depict influence on microclimate in the immediate area. The dominant 



overstory tree species found at dieback sites in all three regions was WRC followed by Douglas-fir (Table 
3).   
 
Table 2. Summary statistics of ground-verified sites with WRC dieback using Survey123 collected points.    

Region 

    OR Eastern WA Western WA 

Ownership Type (% 
Plot) 

Federal 3.4% 62.8% 43.7% 

State 1.1% 11.5% 12.7% 

Industrial Private 3.9% 8.8% 4.2% 

Small Private 64.8% 13.3% 22.5% 

Local 26.3% 0.9% 2.8% 

Other 0.6% 2.7% 14.1% 

Site Type (% Plot) Forest  57.2% 98.3% 91.5% 

Urban Natural  37.2% 1.7% 1.4% 

Urban Landscaped 5.6% 0.0% 7.0% 

Basal Area (ft2/ acre) Average/ Plot 130.4 154.7 164.7 

Avg. Symptomatic WRC/ 
Plot 

61.6 83.4 47.6 

Avg. % of plot with 
symptomatic WRC 

50.1% 52.5% 33.0% 

Insects & Disease 
(including decay) 

Presence 

No  94% 38% 59% 

Yes 6% 62% 41% 

 
 

 
Figure 7. Sites with ground verified WRC dieback generally occupied lower elevation areas when 
compared to the WRC distribution in each region. WRC distribution and dieback in central/eastern 
²ŀǎƘƛƴƎǘƻƴ όΨŜŀǎǘΩύ occurred at notably higher elevations relative to populations in Oregon and western 
Washington. Boxes represent the 1st and 3rd quartiles of the data, box error bars represent minimum and 
maximum, and the median is defined as a line in the box center. Dots are considered outliers. 



 

 
Figure 8. Percentage of ground verified Survey123 collected dieback locations in various aspect 
categories. !ƭƭ ǎƭƻǇŜǎ ǿƛǘƘ ŀ ǿŜǎǘŜǊƴ ƻǊƛŜƴǘŀǘƛƻƴ όƛΦŜΦ b²Σ {²ύ ǿŜǊŜ ŎŀǘŜƎƻǊƛȊŜŘ ŀǎ ΨǿŜǎǘŜǊƭȅΩ ŀƴŘ ŀƭƭ 
ǎƭƻǇŜǎ ǿƛǘƘ ŀƴ ŜŀǎǘŜǊƴ ƻǊƛŜƴǘŀǘƛƻƴ όƛΦŜΦ b9Σ {9ύ ǿŜǊŜ ŎŀǘŜƎƻǊƛȊŜŘ ŀǎ ΨŜŀǎǘŜǊƭȅΩ ŀƴŘ ƴƻǊth and south 
remained the same (http://meted.ucar.edu/). Westerly slopes were most dominant in both eastern and 
ǿŜǎǘŜǊƴ ²ŀǎƘƛƴƎǘƻƴ ǎƛǘŜǎΣ ōǳǘ Ψƴƻ ǎƭƻǇŜΩ ǿŀǎ ǘƘŜ ŘƻƳƛƴŀƴǘ ŀǎǇŜŎǘ ŎŀǘŜƎƻǊȅ ŀŎǊƻǎǎ hǊŜƎƻƴΦ 
 
 
 
 



 
Figure 9. Percentage of ground verified Survey123 collected dieback locations in various slope positions 
by region. Backslope and toeslope were the most common slope positions in both Oregon and eastern 
Washington. More valley bottom sites were recorded in western Washington compared to the other 
regions. 
 
 
Table 3. Frequencies of dominant overstory tree species associated with ground verified sites with WRC 
dieback collected using Survey123.  

 
 
 
Summary of monitor tree data collected at western redcedar dieback sites using Survey123 
 
The average DBH and average number of growth rings in each DGC was not different among ecoregions 
(Table 4). Across all three regions, the majority of monitor trees fell into the 100 or 300 year age 
estimate categories and were in the codominant canopy position (Table 4, protocols highly suggested 
selecting monitor trees of codominant or dominant crown class, age estimations from Van Pelt 2008). Of 
the crown symptoms of dieback observed, crown thinning was the most common symptom observed, 
followed by branch dieback (Figure 10). We only chose live symptomatic monitor trees, so we did not 
record mortality. Future surveys should include the presence of WRC mortality at the site as a site 
notation, and possibly try to capture the density of dead WRC. 

Location

Western 

Redcedar
Douglas-fir

Bigleaf 

Maple
Red alder

Oregon 

White Oak

Western 

Hemlock
Grand fir

Mountain 

Hemlock

Subalpine 

fir

Western 

larch

Oregon 46 9 7 2 3 0 0 0 0 0

Eastern WA 25 10 0 0 0 1 1 0 1 1

Western WA 14 11 8 3 0 2 0 1 0 0

Total 85 30 15 5 3 3 1 1 1 1

Dominant Overstory Species



 
Table 4. Summaries of monitor tree data collected at western redcedar dieback sites using Survey123   

Region   
OR Eastern WA Western WA 

Average diameter at 
breast height (DBH) of 

monitor trees 

n 67 38 40 

Average DBH 29.4 25.0 32.7 

Range 2.2-56.5 9.9-82.0 10.4-80.0 

Average number of annual 
growth rings in each DGC 

n 64 30 8 

0.25" 3.4 6.6 5.0 

0.5" 6.3 12.2 8.6 

1.0" 11.1 22.1 14.0 

2.0" 20.6 39.1 26.2 

Range (2.0") 7.0-58.0 17.0-110.0 18.0-37.0 

Frequencies of monitor 
trees within estimated age 
categories (Van Pelt 2008) 

50 17 1 7 

100 28 21 23 

300 20 16 10 

500 2 1 0 

1500 0 0 0 

Frequencies of monitor 
trees within crown 

classification categories 

Suppressed 1 0 0 

Intermediate  6 4 3 

Codominate 39 28 29 

Dominant 20 6 7 

 
 



 
Figure 10. Proportion of crown symptom of dieback in all ground-verified Survey123 sites with WRC 
dieback. Most sites had multiple crown symptoms recorded. Thinning crowns were by far the most 
common symptoms observed. Note: We did not select monitor trees with mortality, so mortality was not 
recorded.  

 
 
Statistically significant relationships between site factors and dieback/growth  
 
In our plots across our combined ecoregions in WA and OR we found that (see Table 5): 

¶ Monitor trees with larger DBH tended to be in stands with lower basal area of unhealthy WRC 
(potential interpretation: larger diameter trees are more vigorous and can better overcome site 
or climate stress) 

¶ Stands with higher basal area tended to also have a higher proportion of symptomatic WRC 
basal area as well as a slower growth within each DGC (potential interpretation: more 
competition may result in more WRC with dieback that gain less diameter growth over time) 

¶ Intermediate crown classes exhibited the fastest growth within the 0.5” and 1.0” DGCs 
(potential interpretation: trees growing in the intermediate crown class benefit from more 
shading and have fewer water needs than larger trees and thus have benefitted during some 
periods when it comes to diameter growth rate) 

¶ Trees growing on toe slopes yielded the highest number of rings (significant only in most recent 
0.25” of diameter growth) (this result was most pronounced in eastern WA, and we do not have 
an adequate hypothesis to propose, but suggest a larger sample size to test this interaction). 

¶ NE slopes contained the most trees with high dieback ratings and south slopes contained the 
most trees with a medium rating (potential interpretation: these contrary results indicate aspect 
may have been evaluated at too small of a scale (i.e. using local micro-topography relative to a 
larger macro- landscape aspect). We did struggle with aligning observations of aspect and slope 



position for this species that often occurs in small drainages, ephemeral streambeds, shady 
pockets, along edges of waterways, etc. However, we downloaded and attached aspect data 
derived from digital elevation models and did not observe any patterns at dieback sites vs. 
distribution sites with those data either.) 

 
 
Table 5. Significant interactions from ANOVA analyses (pairwise comparisons ƳŀŘŜ ǿƛǘƘ ǎǘǳŘŜƴǘΩǎ ǘ-tests 
ŦƻǊ ǊŜƎǊŜǎǎƛƻƴǎ ŀƴŘ tŜŀǊǎƻƴΩǎ ŦƻǊ /Ƙƛ2) across all regions 

Predictor 
variable 

Response 
variable 

All ecoregions combined 

DBH Unhealthy 
WRC basal 

area 

Negative correlation 

Basal area Unhealthy 
WRC basal 

area 

Positive correlation 

Basal area 
Crown class 

No. rings in 
0.25” 

Positive correlation 

No. rings in 
0.5” 

Positive correlation 

No. rings in 
1.0” 

Positive correlation 

No. rings in 
2.0” 

Positive correlation 

No. rings in 
0.5” 

all other crown classes <intermediate 

Crown class 
Slope 

position 

No. rings in 
1.0” 

all other crown classes <intermediate 

No. rings in 
0.25” 

Toe slope significantly highest number of rings 

Aspect Dieback 
rating 

Highest rating in N=SW<W<no slope<NE 
Medium rating in no slope<all aspects except 

S<S 

 
 
Exploratory relationships between climate/weather data and WRC dieback 
 
We hypothesized that abiotic factors were associated with WRC dieback across the PNW. To explore 
relationships of various weather/climate variables between dieback locations and the OR/WA 
distribution of WRC, we downloaded 30-year normal data (for the period 1991-2020) and yearly data 
from 2015 from ClimateNA v7.20 (Wang et al. 2016) for all 4,962 locations (most locations representing 
the WRC distribution across WA and OR and the remaining locations with ground verified WRC dieback) 
(Figure 5). A small subset of locations had null values for some climate/weather variables and were 
excluded from analyses. We then explored distributions of climate/weather variables such as 
precipitation, temperature, and other calculated variables between the distribution points and dieback 
points.  



Because we hypothesized that dieback sites may occur at sites with less average precipitation or higher 
average/seasonal temperatures, we explored and compared 30year climate normal data by region and 
WRC status (distribution vs. unhealthy points). We also hypothesized that when a severe drought year 
occurred, sites with dieback may occur in even hotter, drier sites than the rest of the distribution, so we 
downloaded data for an extremely dry year in both states (2015) and explored precipitation, 
temperature, vapor pressure deficit, and many derived variables by region and WRC status (Figures 11 
and 12). We hypothesized that early spring weather may be important for WRC growth and health, 
especially in westside systems. Sites with WRC dieback (‘unhealthy’ WRC status) generally had lower 
long-term April, May, and June precipitation and the ranges were smaller compared to the WRC 
distribution (‘distribution’ WRC status), but 2015 medians and variance were closer between 
distribution and dieback sites (Figure 11). Long-term and 2015 maximum temperature were both 
generally higher (and variance smaller) in sites where WRC dieback occurred compared to sites across 
the OR/WA WRC distribution. 
 
 

 
Figure 11. Distribution of April, May, and June precipitation (mm) 30year normals (1990-2020) and the 
same months of precipitation in 2015 (a drought year in both Oregon and Washington, see Figure 2) at 
WRC ΨŘistributionΩ ǎƛǘŜǎ ŎƻƳǇŀǊŜŘ ǘƻ ǎƛǘŜǎ ǿƛǘƘ ƎǊƻǳƴŘ ǾŜǊƛŦƛŜŘ ²w/ ŘƛŜōŀŎƪ όΨǳƴƘŜŀƭǘƘȅΩύΦ Boxes 
represent the 1st and 3rd quartiles of the data, box error bars represent minimum and maximum, and the 
median is defined as a line in the box center. Dots are considered outliers. 
 
 



 
Figure 12. Distribution of April, May, and June maximum temperature 30year normal (1990-2020) and 
the same months of temperature in 2015 (a drought year in both Oregon and Washington, see Figure 2) 
at WRC ΨŘistributionΩ ǎƛǘŜǎ ŎƻƳǇŀǊŜŘ ǘƻ ǎƛǘŜǎ ǿƛǘƘ ƎǊƻǳƴŘ ǾŜǊƛŦƛŜŘ ²w/ ŘƛŜōŀŎƪ όΨǳƴƘŜŀƭǘƘȅΩύΦ Boxes 
represent the 1st and 3rd quartiles of the data, box error bars represent minimum and maximum, and the 
median is defined as a line in the box center. Dots are considered outliers. 
 
To narrow down the list of potential climate/weather variables associated with WRC dieback, we 
explored data using categorical and regression tree (CART) models. CART models are useful to explore 
data structure and develop easy to visualize decision rules for predicting categorical variables such as 
ours (Kabacoff 2017). CART models can be used for classification or regression predictive modeling 
problems. We used the classification method to help predict occurrence of either ‘distribution’ or 
‘unhealthy’ WRC points, where unhealthy points were ground-verified locations with dieback and 
distribution points were from the Individual Tree Species Parameter dataset (Figure 5). CART models are 
essentially a string of if-else statements, where the nodes are split into subnodes on the basis of a 
threshold value of an attribute (in our case we included a suite of seasonal temperature, precipitation, 
and calculated variables as potential predictive variables) (see Appendix Table A2 for full list of 
variables). We viewed full models and then pruned each tree to avoid overfitting the data by viewing 
graphs of cross-validated error results and complexity parameters and selecting the number of nodes 
that minimized the cross-validated error and complexity parameter value (Kabacoff 2017, Milborrow 
2020). We ran two separate models, one for westside locations (combining OR and western WA into one 
model) (Figure 13) and one for eastside locations (Figure 16).  
 
Westside (western Washington and Oregon) CART model 
 
The complexity parameter (cp) of 0.029 minimized error (relative error = 0.69557) and was associated 
with five nodes in the full westside tree, so the final westside model was pruned to five nodes using the 
cp value of 0.029 (Table 6, Figure 13). The pruned westside CART model included the climate predictor 
variables of precipitation as snow from March-May (PAS_sp), mean warmest month temperature 
(MWMT), mean seasonal precipitation (MSP), and fall Hogg’s climate moisture index from September-
November (CMI_at) as predictors (Table 6). Hogg’s climate moisture index (CMI) is described as the 
difference between annual precipitation and potential evapotranspiration (PET) – the potential loss of 
water vapor from a landscape covered by vegetation (Hogg et al. 1997). Higher CMI values indicate wet 



or moist conditions and lower CMI values indicate drier conditions (Hogg et al. 1997). Each node at the 
bottom of the westside CART model shows three items: 1) the predicted class (distribution or 
unhealthy), the predicted probability of being unhealthy, 3) the percentage of all observations in the 
node (Figure 13). 
 
The first node to split data in the westside model was precipitation as snow in spring (March - May, 
mm). A very low threshold of >3 mm predicted 90.1% of all observations as ‘distribution’, with a low 
probability (0.066) of these observations being misclassified as ‘unhealthy’ (Figure 13).  All predicted 
unhealthy locations fell to the right side of the tree below the threshold of PAS_sp < 3 mm (Figure 13). 
The next node for splitting was mean warmest month temperature (°C) and the threshold for a split was 
19.9 °C. Most of the remaining observations fell below this threshold and needed further splitting, but 
3.3% of all observations were classified as ‘unhealthy’ at this split when MTWM was above 19.9 °C with 
a high probability of being classified correctly as unhealthy (0.923, Figure 13). The relationship between 
the first node (spring precipitation as snow) and two other node variables (mean temperature in the 
warmest month and autumn climate moisture index) are shown in Figure 14A and B, respectively. Most 
‘unhealthy’ dieback points clustered below the spring PAS threshold of 3 mm and at the higher end of 
the mean warmest month temperature (Figure 14A) and the lower end of the autumn climate moisture 
index (Figure 14B). 
 
 

 
Figure 13. Classification tree for westside plots (western Oregon and western Washington). The full 
selection of climate predictor variables is available in Appendix Table A2. Each node at the bottom of the 
westside CART model shows three items: 1) the predicted class (distribution or unhealthy), the predicted 
probability of being unhealthy, 3) the percentage of all observations in the node. The complexity 
parameter (cp) of 0.029 minimized error (0.69557 error) and was associated with five nodes in the full 
westside tree, so the final westside model was pruned to five nodes using the cp value of 0.029. The tree 
had a misclassification rate of 8.4% in cross-validation (calculated as root node error * xerror * 100% = 
0.12115 * 0.69557 *100) (following methods in Ma 2014). 
 



 
Table 6. Variables selected in westside cart model, sample size, and root node error  

Westside CART model 

Variable Description Node 'split' 
value 

PAS_sp Spring (March - May) precipitation as snow (mm) 3 

MWMT  Mean warmest month temperature (°C) 19.9 

MSP May to September precipitation (mm) 151 

CMI_at Autumn (Sept-Nov) Hogg’s climate moisture index 
(mm) 

15 

n= 4284  

Root node error: 519/4284 = 0.12115 

 
 

 
Figure 14A-B. Variation and grouping of WRC status for first and second predictor variables (nodes) in 
westside CART model (PNAS_sp and MWMT).  Most of the unhealthy points fell below the PAS_sp value 
of 3 mm (first split in pruned CART model predicted all unhealthy points fall under PAS_sp < 3 mm) and 
also at the higher end of the mean warmest month temperature (CART model predicted split at 19.9 
degrees C). A proportion of the unhealthy points are below the predicted CMI_at threshold of < 15 (last 
node split).  
 
When the full dataset was mapped and classified according to a single climate threshold of spring 
precipitation as snow (PAS_sp) above or below 3mm, the unhealthy data are predominately in the low 
elevation urban corridor from the Portland/Multnomah county area up north to Seattle area, along the 
Puget Sound and coastal areas on both sides of the Sound (including islands and the northeastern tip of 
the Olympic Peninsula) (Figure 15). When we overlay the ground verified locations with WRC dieback on 
top of these predictions, there was some agreement that many verified locations of dieback occur in this 
area (Figure 15). While data do not align perfectly, we feel the spring precipitation as snow looks to be a 
fairly predictive variable to explain where dieback is most likely to occur in westside systems (see 
misclassification rate of CART model) and could be used in further exploratory or predictive models. In 
WA, the first node of the CART model did not appear to accurately predict sites along western slopes of 



the Cascades or further west on the Olympic Peninsula where dieback has been observed (Figure 15). 
The model did predict dieback along the north and northeast side of the Peninsula, where there is some 
rainshadow effects. In OR, the model appears to misclassify the location and/or density of redcedar of 
many currently healthy sites in southern OR (coastal and the interior) as sites with dieback. Many of 
those sites were scouted for dieback, and either a low incidence of redcedar was observed, dieback was 
not present or spare, or dieback was present only as old topkill (remaining crown still green) and 
extensive stem decay was evident as a confounding factor. 
 

 
Figure 15. All WRC database locations separated by first predictive node (spring precipitation as snow > 
3) in westside CART model (blue and orange droplets represent above and below the first node threshold 
of PAS_spring, respectively). Network of ground verified WRC dieback locations overlaid on top (data 
sources = Survey123 and iNaturalist WRC dieback projects). Inset graph: spring PAS medians/quartiles 
separated by region and WRC status. 
 



Eastside (central and eastern Washington) CART model 
 
The complexity parameter (cp) of 0.031 minimized error (relative error = 1.0256 error) and was 
associated with five nodes in the full eastside tree, so the final eastside model was pruned to five nodes 
using the cp value of 0.031. The tree had a misclassification rate of 17.2% in cross-validation (calculated 
as root node error * xerror * 100% = 0.16318 * 1.0256 *100) (following methods in Ma 2014). The 
pruned eastside CART model included the climate predictor variables of summer (June-August) Hogg’s 
climate moisture index, extreme minimum temperature over 30 years (EMT), Hargreaves reference 
evaporation (mm, Eref), and precipitation as snow as predictors (PAS, Table 7, Figure 16). The Climate 
Moisture Index (CMI) is described as the difference between annual precipitation and potential 
evapotranspiration (PET) – the potential loss of water vapor from a landscape covered by vegetation 
(Hogg et al. 1997). Higher CMI values indicate wet or moist conditions and lower CMI values indicate 
drier conditions (Hogg et al. 1997). Each node at the bottom of the eastside CART model shows three 
items: 1) the predicted class (distribution or unhealthy), the predicted probability of being unhealthy, 3) 
the percentage of all observations in the node (Figure 16). 
 
The first node to split data in the eastside model was summer (June-August) Hogg’s climate moisture 
index (Figure 16). A low threshold of -30.9 mm split data, but all data needed at least one more split. The 
extreme minimum temperature predictor of -27.2 split 2.9% of the observations as ‘unhealthy’ 
(probability of 0.714) and 2.5% of the data as ‘distribution’ (Figure 16). Most observations were split 
using autumn Eref (following the summer CMI split) of less than 128 mm (57.5% of observations were 
predicted as ‘distribution’) (Figure 16). All data with autumn Eref > 129 needed the additional variable 
PAS to split data at 312 mm, and the remaining ‘unhealthy’ observations were associated with more 
than 312 mm precipitation as snow (Figure 16). The relationship between the first node (summer CMI) 
and two other node variables (EMT and autumn Eref) are shown in Figure 17A-B. Compared to westside 
models, the eastside ‘unhealthy’ points seemed distributed more evenly throughout the WRC 
‘distribution’. There is some visible grouping of unhealthy points at the high end of the autumn Eref and 
low end of summer CMI. An additional note about the eastside model is that when site attributes were 
included as potential predictor variables the first node selected to split data was elevation, where more 
‘unhealthy’ sites occurred at lower elevations. We ultimately decided to limit potential predictor 
variables to only climate variables in both models and did not include elevation, aspect, etc. in any 
potential models, but they could potentially improve the eastside model. 
 
 



 
Figure 16. Classification tree for eastside plots (central and eastern WA). The full selection of climate 
predictor variables is available in Appendix Table A2. Each node at the bottom of the eastside CART 
model shows three items: 1) the predicted class (distribution or unhealthy), the predicted probability of 
being unhealthy, 3) the percentage of all observations in the node. The complexity parameter (cp) of 
0.031 minimized error (1.0256 error) and was associated with five nodes in the full eastside tree, so the 
final eastside model was pruned to five nodes using the cp value of 0.031. The tree had a 
misclassification rate of 17.2% in cross-validation (calculated as root node error * xerror * 100% = 
0.16318 * 1.0256 *100) (following methods in Ma 2014). 
 
Table 7. Variables selected in eastside cart model, sample size, and root node error  

Eastside CART model 

Variable Description Node 'split' value 

CMI_sm Summer (June-Aug) Hogg’s climate moisture index 
(mm) 

30.9 

EMT Extreme minimum temperature over 30 years -27.2 

Eref Hargreaves reference evaporation (mm) 128 

PAS Precipitation as snow (mm). For individual years, it 
covers the period between August in the previous year 
and July in the current year 

312 

n= 717  

Root node error: 117/717 = 0.16318 

 
 
 



 
Figure 17A-B. Variation and grouping of WRC status for first, second, and third predictor variables 
(nodes) in eastside CART model (CMI_sm, EMT, and Eref_at)). Both distribution and unhealthy datapoints 
are spread throughout the distribution of each variable, although unhealthy points do appear visibly 
clustered towards the low end of summer CMI and the high end of autumn evaporation. 
 
When the full dataset was mapped and classified according to a single climate threshold of summer 
climate moisture index (CMI_sm) above or below -30.9mm, sites predicted as unhealthy were apparent 
in both central and northeastern WA, generally in areas towards the edges of the WRC distribution 
(Figure 18). When we overlay the ground verified locations of WRC dieback on top of these predictions, 
there was some agreement where verified locations of dieback occurred, especially in north-central WA 
and some of the most southern locations in northeastern WA (Figure 18). The eastside model had a 
higher misclassification rate and did not appear as useful as the westside when known locations of 
dieback were aligned. Lower summer climate moisture index as the first node to split data illustrates 
that WRC dieback is occurring in drier, hotter locations in eastern WA, and including climate moisture 
index may be useful in further exploratory or predictive models. Dieback sites in the very northeastern 
WA locations (generally east of the Pend Oreille River and higher elevations) were not accurately 
predicted (Figure 18). 
 
 



 
Figure 18. All WRC database locations separated by first predictive node (summer IƻƎƎΩǎ ŎƭƛƳŀǘŜ 
moisture index < -30.9mm) in eastside CART model (blue and orange droplets represent below and above 
the cutoff of summer CMI, respectively). Eastside ground verified WRC dieback locations overlaid on top 
(data sources Survey123 and iNaturalist WRC dieback projects). Inset map: Summer CMI values 
separated by region and WRC status. 
 
 
Conclusions  
 

¶ WRC dieback was observed across the PNW distribution of WRC, with the exceptions of coastal and 
higher elevation mountainous regions of OR 

¶ Frequency of WRC dieback locations were highest in low elevation, urban corridors in western WA 
and northwestern OR 

¶ The most common symptom of WRC dieback was thinning crowns, followed by branch dieback 

¶ No site factors were associated with higher severity of individual tree crown dieback or transparency 

¶ At sites with dieback, symptomatic WRC made up approximately 30-50% of the total basal area 

¶ No biotic damage agent was found associated with WRC dieback across the region 

¶ More WRC dieback sites were observed at lower elevations compared to the WRC distribution 
across the PNW 

¶ More dieback sites were observed on westerly slopes in WA, and areas with no slope in OR 

¶ Dieback sites were not strongly associated with any one slope position 



¶ In westside systems (western WA and OR), low spring precipitation as snow was the first chosen 
predictor variable from a suite of climate variables, and appeared to be a fairly strong predictor 
variable separating sites with dieback from the WRC distribution 

¶ In eastside systems (central and eastern WA), low summer climate moisture index was the first 
chosen predictor variable from a suite of climate variables, but was not a strong predictor variable 
separating sites with dieback from the WRC distribution 

 
Proposed future directions 
 
Å We have identified specific sites that are conducive to further study, based on presence of 

symptoms across larger areas, ease of access and landowner permission. At a subset of these sites 
we recommend (and will continue to develop collaborations with specialists to investigate): 

Å Tree dissections (e.g. rings at various stem heights, close inspection of dead tops), in-
depth root investigations (e.g. depth and area of roots) 

Å More thorough, local investigations into soil type, texture, drainage, etc. at sites with 
WRC dieback. Note: We downloaded and attached course-scale soils information to our 
locations but did not visibly note any obvious patterns of sites with dieback to 
investigate further. We investigated some available comprehensive soils variables 
available from FHAAST, such as Drainage Index (see Figure A1 in Appendix) and 
Productivity Index, but did not see large differences between sites with dieback and 
sites that represented the entire WRC distribution (Appendix Figure A1). 

Å Investigate physiology in various canopy positions (e.g. sun vs. shade, top vs. lower 
crown) 

Å Use dendrochronology (tree cores) to determine if reduced growth or dieback severity 
were associated with drought years between symptomatic trees and nearby healthy 
trees (in progress by Adams/Moffat labs, Washington State University) 

Å Note: PIs have committed to revisit a subset of sites to monitor progression of 
symptoms 

Å Note: PIs will keep Survey123 open and updated and continue to collect location data 
 

Å More in-depth pattern analyses of climate data, site index, microtopography, and other variables 
such as the effect of heat islands that may influence WRC dieback occurrence from tree to tree.  

Å Continue scouting dieback locations across areas that were not adequately sampled within the 
timeline of this project (i.e. Olympic Peninsula, Idaho, British Columbia) 
 

 



APPENDIX 
 
Appendix Table A1. Biotic damage agent presence (when possible, we avoided selecting monitoring trees 
with obvious insect or disease signs and symptoms that may confound our search for the mortality 
causal agent): 
 

  OR Eastern WA Western WA 

Drought Scorch 0 0 1 

Heart Rot 2 12 7 

Keithia Blight 0 0 1 

Mechanical Wound 1 0 9 

Old Unidentified Basal Canker 1 0 0 

Phloeosinus spp.  0 0 2 

Root Disease 0 1 1* 

Woodborers 0 0 3 

Woodpecker 0 1 0 
 
*Root pathogen identified as Armillaria sinapina, first report on dying Thuja plicata host in Washington 
(pers. comm. Mee-Sook Kim, PNW Research, Corvallis, OR). 
 

 
Appendix Figure A1Φ {ƻƛƭ ŘǊŀƛƴŀƎŜ ƛƴŘŜȄΦ ¢ƘŜ 5ǊŀƛƴŀƎŜ LƴŘŜȄ ό5LύΣ ƻǊƛƎƛƴŀƭƭȅ ƴŀƳŜŘ ǘƘŜ άƴŀǘǳǊŀƭ ǎƻƛƭ 
ǿŜǘƴŜǎǎ ƛƴŘŜȄέ ό{ŎƘŀŜǘȊƭ et al. 2009), is a measure of long-term soil wetness. It is designed to represent, 
as an ordinal number, the amount of water that a soil contains and makes available to plants under 
normal climatic conditions. The higher the DI, the more water the soil can and does, theoretically, supply 
to plants. Sites with DI values of 99 are essentially open water. A DI of zero indicates impermeable 
surfaces like bare bedrock or urban areas dominated by pavement and buildings (Schaetzl et al. 2009).  
 
 



Appendix Table A2. All potential predictive variables and short descriptions included in westside and 
eastside CART models (source: ClimateNA, 30-year normal period 1990-2020, Wang et al. 2016). 

Variable Description 

MAT mean annual temperature (°C) 

MWMT mean warmest month temperature (°C) 

MCMT mean coldest month temperature (°C) 

TD temperature difference between MWMT and MCMT, or continentality (°C) 

MAP mean annual precipitation (mm), 

MSP May to September precipitation (mm), 

AHM annual heat-moisture index (MAT+10)/(MAP/1000)) 

SHM summer heat-moisture index ((MWMT)/(MSP/1000)) 

PAS 
precipitation as snow (mm). For individual years, it covers the period between 
August in the previous year and July in the current year. 

EMT extreme minimum temperature over 30 years 

EXT extreme maximum temperature over 30 years 

Eref Hargreaves reference evaporation (mm) 

CMD Hargreaves climatic moisture deficit (mm) 

RH mean annual relative humidity (%) 

CMI Hogg’s climate moisture index (mm) 

Seasonal variables and 
months associated with 
season  (variables 
below) 

Winter (_wt): Dec (prev. yr for an individual year) - Feb for annual, Jan, Feb, Dec 
for normals 

Spring (_sp): March, April and May 

Summer (_sm): June, July and August 

Autumn (_at): September, October and November  

Tmax_wt, sp, sm, at Winter, spring, summer, autumn mean maximum temperature (°C) 

Tmin_ wt, sp, sm, at winter, spring, summer, autumn mean minimum temperature (°C) 

Tave_ wt, sp, sm, at winter, spring, summer, autumn mean temperature (°C) 

PPT_ wt, sp, sm, at winter, spring, summer, autumn precipitation (mm) 

PAS_ wt, sp, sm, at winter, spring, summer, autumn precipitation as snow (mm) 

Eref_ wt, sp, sm, at winter, spring, summer, autumn Hargreaves reference evaporation (mm) 

CMD_ wt, sp, sm, at winter, spring, summer, autumn Hargreaves climatic moisture deficit (mm) 

RH_ wt, sp, sm, at winter, spring, summer, autumn relative humidity (%) 

CMI_ wt, sp, sm, at winter, spring, summer, autumn Hogg’s climate moisture index (mm) 
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